In a lab in the heart of France’s wine country, a group of researchers carefully positions an ultra-high-speed camera. Like many good scientists, they are devoted to the practice of unpicking the universe’s secrets, seeking to describe the material world in the language of mathematics, physics and chemistry. The object of their study: the bubbles in champagne.
Chemical physicist Gérard Liger-Belair, head of the eight-member “Effervescence & Champagne” team at the University of Reims Champagne-Ardenne, perhaps knows more about champagne bubbles than anyone else on the planet. Starting with his PhD thesis in 2001, Liger-Belair has focused on the effervescent fizz within and above a glass. He has written more than 100 technical papers on the subject, including a 2021 deep dive into champagne and sparkling wines in the Annual Review of Analytical Chemistry and a popular book (Uncorked: The Science of Champagne).
“When I was a kid, I was entranced by blowing and watching soap bubbles,” Liger-Belair recalls. That fascination has persisted, alongside a host of more practical work: There are plenty of good reasons to be interested in bubbles, extending far beyond the pleasures of sparkling wine. Liger-Belair has helped to show which aerosols are thrown up into the sky by tiny bursting bubbles in sea spray, affecting the ocean’s role in cloud formation and climate change. He even helped to determine that some mysterious bright spots in radar scans of Saturn’s moon Titan could be centimeter-sized nitrogen bubbles popping at the surface of its polar seas.
But Liger-Belair has had the pleasure of focusing the last 20 years of his work on the bubbles in champagne and other fizzy drinks, including cola and beer. His lab investigates all the factors that affect bubbles, from the type of cork to wine ingredients to how the drink is poured. They interrogate how these carbon dioxide bubbles affect taste, including the size and number of bubbles and the aromatic compounds kicked up into the air above the glass.